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Solution of the Ornstein-Zernike Equation for a Mixture 
of Hard Ions and Yukawa Closure 
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The solution of the Ornstein-Zernike equation with Yukawa closure dis- 
cussed in an earlier paper is simplified and extended to the more general 
case of several exponentials with real or complex exponents. The interesting 
case of an ionic mixture with Yukawa closure is solved explicitly. This case 
corresponds to ionic melts (molten salts). 
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1. I N T R O D U C T I O N  

In recent papers (1'2) we found solutions o f  the Ornstein-Zernike (OZ) equa- 
t ion for systems of  hard spheres with Yukawa  closure for various cases of  
pure fluids and mixtures. This work extended the work  of  Waisman et al. <a,~ 

of  the solution of  the Yukawa  closure for a single-component fluid. 
In  our  previous work the Fourier  t ransform ~5'6~ method was used, which 

led to relatively simple sets o f  algebraic equations, and also gave explicit 
formulas for most  o f  the relevant quantities. 

One of  the more  interesting applications o f  this solution is the generalized 
mean spherical approximat ion (8) of  ionic melts. In  this case, the system is a 
mixture o f  charged, hard spheres o f  different size. The direct correlation 
funct ion for distances larger than contact  is 

cij(r) = -[3e~ej/%r + K~je-~<r-%)/r, r > a~ 

where/~ = 1 / k T  is the Bol tzmann factor, er is the electric charge of  ion i, 
e~j is the distance at contact  o f  the pair  (i, j ) ,  and e0 is the dielectric constant.  
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Here Ku and z are constants to be adjusted by physical arguments (self- 
consistency). While this problem has been extensively discussed by Stell and 
collaborators (4'8'9~ for the restricted case of equal size ions, a discussion for the 
more realistic case of different sizes is still missing. Our solution is a step in 
this direction. 

The solution of this case is also of interest for the problem of spin-glasses, 
or configurationally disordered spin systems. (~~ 

Furthermore, the general case with an arbitrary number of exponentials 
can be solved explicitly (although it is very complicated), so that in principle, 
the parameters can be adjusted to satisfy some other closure, such as the 
HNC or LHNC. 

In Section 2 we give a brief summary of our previous work and also the 
formal solution of the general case with an arbitrary number of Yukawas. 

In Section 3 we elaborate further on the single-Yukawa case (2) and give 
a more explicit solution in terms of a single set of parameters. When the 
exponent z - +  0 and an "electroneutrali ty" condition is imposed, then this 
solution becomes identical to the MSA for the ionic melt. (~1,z2,~) 

Finally, in Section 4 we give the results for the case of an ionic melt with 
a Yukawa closure for the general case of unequal diameters. (The case of 
equal-size ions was solved also by Mou and Mazo. (~2)) This result is obtained 
from the general solution of the two-Yukawa case. 

2. FORMAL SOLUTION 

Consider first the OZ equation for a mixture of spherical molecules: 

hu(r) = cu(r) + ~ P~ f dr1 q,(rl)hu(lr - rl[) (1) 

where hu(r ) is the (indirect) pair correlation function between species i andZ 
qj(r) is the direct correlation function of the same pair, and p~ is the number 
density of species l. The molecules in our system have a repulsive spherical 
hard core of diameter •z. Since the hard molecules cannot overlap, 

hu(r ) = - 1  for r < cr u (2) 

where a u = �89 + aj) is the distance of closest approach. As in our previous 
work, (2) the general closure of the problem is to require that 

cu(r ) = ~ KfCe-~=('-%)lr, r > o u (3) 
m 

The parameters K~ and zm are either given by the problem, which is the 
case of the mean spherical approximation (MSA), or are determined from 
some other physical criteria (GMSA, (*) OZVA, <9) etc,). 
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The procedure is a generalization of our previous work, (2~ but there are 
some differences in the details. The OZ equation in Fourier space is 

[S~ + p ~ . ( k ) ] [ 3  u - pj?u(k)]  = 3 u (4) 
l 

where • ( k )  and ~il(k) are the three-dimensional Fourier transforms of hn(r ) 
and qz(r). For disordered systems hii(k) < oo on the real k axis, and, follow- 
ing Baxter, (5~ we write 

3,~ - e~,~-(k) = ~ [3,t - ptO,t(k)][~,; - p~O~(-k)] (5) 
t 

It  can be shown by detailed analysis that 

where 
L 

o 0  

Q_u(k) = dr ei~Qu(r ) 
yt 

(6) 

Aj~ = �89 - ~,) (7) 

The function Qu(r) can be shown <2'5~ to be of  the form 

Qu(r) = Q~ + ~_, D~.e-~," (8) 
tL 

where 

O~ �89 - -2 ,, = c%) qu + (r - (ru)qu. 

C#(e . for ,~,.~ < r < ~u + ~ h - ~ ,  _ e-~,%) (9) 
t~ 

= 0 otherwise 

The problem of solving the OZ equation is thus reduced to the problem of 
finding the coeff• of Qu(r). Let us first write (9) in a slightly different 
form: 

1 
Q~ = ~ (r - au)(r - Aj,)Au + (r - ~u)flu + ~ Ci'}( e -~"  - e-~"%) (10) 

where 
# 

Au = qu (11) 
M /~u = q[J - (gJ2)qu (12) 

We get conditions for these coefficients by taking the inverse Fourier 
t ransform of the defining equation (5): 

2zrrcu(r) = - Q'u(r) + ~.  pi ( dr1 Qjl(rl)Q~z(rl + r) (13) 
-7  J 
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For  large r > a,j we need 

e~"~"2,rK~ = z. ~ D~[3~j - p, Ojz(iz.)] (14) 

which is one of  the sought equations. 
Furthermore.  f rom (4) and (5), we get 

~ '  [3. + p,~,z(k)l[3,t - ptOzt(k)] = {I - p0( -k )}? ;  ~ (15) 
l 

and since the right-hand side is analytical and has no poles on the lower half  
of  the complex k plane, we may get the Fourier inverse by closing a contour 
around it. The result is 

2~rrh~j(r) = - Q~j(r) + 2= ~ p, f dr~ (r - r~)h.(]r - r~[)Q~j(rl) (16) 

From here and (2) we get, using (10), that  

A,j--- A j =  2rr (1-  ~ pIT~ )) (17) 

- = . - % '  Tz(~ ] (18) 

where we have defined the moments 

T~ .~) = dr r~Q~j(r) (19) 
t t  

From (8) and (9) we find, after a short calculation, 

T[O)= crl2fly .,3Aj 
2 12 

1 
(1 + z.a,)] - ~ e-~.%[(C~ + D'~,)z.~o~(-z.,crt)- D ' ~  (20) 

= 

2 12 

where 

+ ~ e-Z.a,, (C~ + D~.)z.t~l(z., az) + D, 5 1 + 

(21) 

wl(z. o) = (1/z~)(1 - zo - e -z~ (22) 

(72 
~bl(z , a) = (1/za)[1 - �89 - e -~(1  + �89 = Tz e-~lzil(�89 (23) 

il(x) = (1/x2)(sinh x - x cosh x) (24) 
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We now solve (17) and (18) for Aj and/3j: This yields 

2~r qro~j n~ fiJ = -E- + X m~ 

1 mjn) 

with 

and 

(25) 

(26) 

with 

with 

and 

~z(z.) = dr e-~.~rg~i(r), g.(r) = 1 + hiz(r) 

Using (31), we eliminate C~} from (29) and (30): 

~," = ~ ,  p~q"(z.)D~,e-~.~ 
t 

rn:" = ~ ptC, m(z.)Dg.e-Z.~,t 
t 

Ct"(z.) : ~y.(z.)eZ.' .zn~bl(z. ,m) + l  ( l  + 2 (36) 

Ctm(zn) = ~ ya(z.)e-Z.Xuz.q)l(-z., crt) - ~ 1 + z.et 
l 

g~j(z,~) and Dg., and we have one set of equations (14). The other set is obtained 

q? + D~,. = ~ r,(z.)D~, (31) 
l 

y . ( z . )  = 2.~;,~,.(z.)/z. (32) 

(33) 

(34) 

(35) 

So far, we have reduced the algebraic problem to two sets of parameters, 

E .e-,,( I~j n = ~ pze-Z.a,, (C~ + D~.)zn~bz(zn. a,) + D,j. ~ 1 + (29) 

l 

From the third and higher derivatives of (16) we get the set of conditions 

ffm = ~ pz(m) ~ (27) 

A = 1 -- 61rr~a (28) 
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from Eq. (16) by Laplace transformation. Following a procedure described 
in Ref. 2, Eqs. (30)-(33), we get (in the notation of Ref. 2) 

e - sat1 tt e - (s + Zn)Ctit 
2~-~,~(s)[~zs - &Ou(is)] = 7 (q'j + sq;,) - ~. s ~ ~ z.C~ (38) 

The required set of equations is obtained from (38) by making s = z.. 
Using (11), (12), (25), (26), and (6), we get, after some lengthy but straight- 
forward algebra, 

- zn ~ ?~z(z.)e~"~ + gm, ~Yl) + e-(~"+~)~'Cpo(-Z., ~z)]~ = 0 
1 ) 

(39) 
with 

90(s, a) = (l/s)(1 - e -s~ 

and 

1 

with 91(s, al) given by (22). 

(40) 

(41) 

This is a set of linear equations for D~ in terms of ~j(z,) only. This set 
of equations can be solved, and substituted into (14), to get a set of nonlinear 
equations for g~j(z,). A physical branch of the solution has to be chosen from 
the manifold of solutions. 

Using (38), we can write (14) in a slightly more convenient form 

I 

= P k ~ D ' ~ k  Ak 1 + + Z.t3k-- z .  2 
k Z n  g n  + Z m  

] 

(42) 

where Ak is given by (26), Bk by (25), and C~ by (31). 
These sets of equations, (39) and (42), constitute the formal solution of 

the given problem, since we can calculate all the coefficients in the functions 
Q~j(r), (8), from ff~j(z.), and therefore, the pair correlation functions and the 
thermodynamic properties. In the next section we will show that for the case 
of one Yukawa some remarkable simplifications occur. 
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3. THE O N E - Y U K A W A  CASE A N D  THE L I M I T  OF 
I O N I C  M E L T S  

When the Yukawa closure has only one set of exponentials, that is, 

c~j(r) = Kije-~(~-%)/r (43) 

then the equations of the preceding section simplify considerably. 
First notice that (39) becomes, with (25) and (26), 

1 re C ? ( z )  - ~ j C ? ( z )  27@~(z)e~% - 1 + ~ [2 S ~s S 

= -~ mj + S ~ m  C~"(z) + mC?(z) 

1 1 
+ 2 ~ {~,~z(z)e~O.[Czj(z~o(z, ~))2; + Du]e-~A~} _ 2 G je -~ , j  (44) 

Furthermore, using (31), (34), (35), and the fact that 

+ 1 + ~ ,  ~,~(z)e~.z~o(z~z) - ~z(1 + e-~')e~"~,tz -- 2zG"(z)  (45) o" t 

1 

we get 
~ - z o "  t �89 ~ ~2~kf2~,Dtje ' = Yis(z) (46) 

with 
f2,~ c = (2re/A)C,U(z)pk(rk -- y, ee~,7,Zepo(Z, cry) -- 3,~ (47) 

f~*~ = (2re/ A)Ct"(z)ptcr~ - ek,e~%,ZCpo(Z, ~k) - 3k, (48) 
Y,j(z) = 2~rg, j(z)e~,, - (27r/A)[l + �89 - (re/A)ajG~(z) (49) 

In matrix form, we write 

�89 ~ * e - ~ / ~ D e  - ~ / ~  = Y (50) 

which can be solved to yield 

D = 2e ~/~ [(~2")- ~2 - ~Y]e ~/~ (51) 

Using (25), (26), (34), and (35), we get from (42) 

_~ ~ [lre~z~ ~-2re( 21 sre) 
l Ir 

x -~ 1 + + ~ D,~e-z,~., 8t~ -- y # e - ~ ,  + G~(z)  + [~ Cfl(z) 

Equations (51) and (52) must be solved numerically for the set ~,~(z). 



668 Lesser Blum 

Let us also show that if 

X,j  .--> f i e # l % ,  z ---> 0 (53) 

where/3 = l / k T  is the Boltzmann factor and e~ is the ionic charge, then we 
get the limit of the MSA for the ionic mixture. ~x~-~8> This will be not only an 
instructive example, but also will serve as an introduction to our next section, 
where we will discuss the GMSA for the case of different diameters. 

First, notice that for z ---> 0 

~ox(z, az) --+ -a~2/2,  ~b~(z, crz) ~ - ~,8/12 (54) 

Furthermore, from (14) and (53) we must have 

D~j = -- z~a~ ~ (55) 

(4~r/3/%) ~ p # 2  = ~ p,(a o)2 (56/ 
t i 

Using these relations and the electroneutrality 

p,e, = 0 (57) 
i 

we get from (25) and (26) the results for the ionic MSA (~,~3,~ 

/3j = w%./A + aj~ (58) 

_ ~ (  1 ~r ) ~" o 
A j - -  1 + ~ . ~ a ~  + x a ~ P .  (59) 

with 

) AN = X P~e~'r~2 + -6 Pz'~3Bz (60) 

P .  = + + (62) 
k 

Furthermore, from (31), we get the set of constants C~j (which are divergent 
now0 

C~j = lim aj~ - B d z  ) (63) 

Using (8), we get the quantity Q~j(Aj~) 

Q~j(Aj,) = lim [- ,zd3 j + Cu(e -~J ,  - e-z~,) + D, je -~ j l ]  (64) 
Z--~O 

which, by virtue of (63) and (58), yields 

Qij(Aj,) = - a , % w / A  - aj~ + a,N,) (65) 
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with 

N~ = B~ + A N (66) 

which is our previous expression [Eq. (2.33) of Ref. 13]. The symmetry of 
Q~j(hj~) is a crucial condition in the solution of the general mixture of hard 
ions. 

Finally, we get an expression for aj as a function of N~ (or, equivalently 
B~, which is the excess internal energy parameter (~s~) from the limit for 
z ---~ 0 of (51): 

aj ~ = -(2/D~)[Nj + (~r/2A)~jP~], D~ = ~ pk(e~ + N~k)  2 (67) 

which is also our previous expression. 
As was discussed in Refs. 12 and 14, Eqs. (56), (64), and (67) con- 

stitute the formal solution to the MSA of the primitive model of electrolytes 
of different sizes. 

4. THE CASE OF THE IONIC MIXTURE WITH Y U K A W A  
CLOSURE 

We consider now the somewhat more complicated case of a mixture of 
different size ions. (1) From our general results of Section 2, and using a 
limiting procedure similar to that described in the last section, we get, from 
(25) and (26), 

fly = (~r/A)~j + ajAz~ + (2~-/A)/zj (68) 
and 

Aj = (2~r/A)[1 + (~-/2A)~2% + �89 + rnj + (~r/A)/~j] (69) 

where we have used the definitions of the last section. 
Furthermore, from (38) and (39) we get one set of equations by setting 

z n = O, 

2 (~r ~" 
aj = aj ~ - ~ ~ l~sP,~ ,+ -~ myA N 

+ ~ p z [ - e ~ + ~ t  etT~t(z)ze-~'.-Bze~zJD~se-~% } (70) 

where 
a ~ = -(2/D,~)[Nj + �89 (71) 

D,~ = ~ p~(ek + N~rk) ~ (72) 
k 

Using (34) and (35), we get 

a j  = a j  ~ - -  - -  
2 

Da ~ PzAz(z)Dzje-~% (73) 
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with 

"17" It 77" A N C 1 M ( z )  - -  el -- Ble z~z + ~ ety~t(z)ze -zat~ A,(z) = S P,~C, (z) + S 

where 

(74) 

Next,  consider Eqs. (38) and (39) for  z .  = z: After  much  algebra,  we get 

2~rg~s(z) - 1 + ~ ~2 ~ ~j C~"(z) - ~ asCii(z) 

1 ~ n n , n  ,,-z(a,,+a,? 
- -  ~ i k ~ a k t Z ~ , t j ~  , = ajAi*(z) 2 ~,t (75) 

~" u 1 
A~*(z) = ~ P,,C~ (z) + z Ni + ~_, yu(z)eZ~"[zqol(z, ol) - el] (76) 

l 

Combining  (73) and (76) will give us a set o f  equations for  D~j: 

rr  at "~ 
+ S ~sc, (z) 

which gives Dts as a function of  the excess energy paramete rs  Nj,  aj ~ and 
~,(z). 

These parameters  are calculated f rom the symmet ry  condit ion (64), 
which now reads 

Q , j ( A j i ) - -  Q j i ( A , j )  ( 7 8 )  
with 

Q~s(~si) = - ~ ( b 0 r / A )  -- aj~ + N~,h) + (C~j + D~s)(e-~b, -  e-~~ + D~se~,J 
(79) 

Another  set o f  equations is obta ined f rom the limit o f  (14) for  Zo ~ 0, which 
yields (63) 

= ( 8 0 )  

Finally, if  we take Eq. (14) for z~ = z, we will get an equat ion for the 
parameters  ~ij(z): 

2rr ~ Kw,M)  e z% 
l 

=lk~.pee-ZatkD,~Y~ytDtee-Z'tk 
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with 

1 za t z } -~ zyjte- ~ + ~ 8# (82) 

For the specific case of a binary mixture, Eq. (79) can be solved in a 
simple way, yielding [together with (80)] two equations for two unknowns 
N~, N2 (or B~, B2) as functions of ~,u(z) [or gu(z)]. These equations can be 
solved by computer. 

5. D I S C U S S I O N  OF P R O P E R T I E S  

The results of the preceding sections can be used to compute the proper- 
ties of the system under study. Our results here are a mere extension of those 
of our previous work, ~m so that we will only quote them. 

From Eqs. (10) and (16), we see that the contact pair distribution function 
is 

1 1 [ ~ ~z~C~e-~,%] (83) 
gu(~) = 2=~----j. [Q'J(~u)] 27r~,---~. /3j + T -- 

where Aj,/?j, C~ are given by (25), (26), and (31) in the most general case, or 
by similar expressions in the particular cases discussed in Sections 3 and 4. 
From (83) we can compute the virial pressure for the ionic mixture case using 
the formula (15~ 

1 2rr 
P~PJ ugu( u)] (84) 

where Ap is the excess pressure, and B~ is given by Eq. (61). 
The internal energy is obtained directly by integrating the standard 

expression, with the result (for the ionic case of Section 4) 

-B AE = Co--1 ~. p~e~B~ (85) 

Unfortunately, the very elegant results of Hoye and Stell for the MSA(lm 
do not apply directly to the present case, and we have no explicit formula for 
the excess properties calculated from the internal energy. 

Let us finally remark that the Laplace transform of the pair correlation 
function can be obtained for the general case from Eq. (38): 

2rrg,,(s)[au - p, Ou(s)] 
l 

] s2 j 1 + - -  + A j  - s + z ~ Z ' C ~  (86) 
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with 

Ozj(s) = {[fJj~ol(s, ~l) + Aj~bl(s, ~l) 

"[  e-<~+~,~'' - e-<~+~"'~' e - ~ , ,  (e_~a,, _ e _ ~ O  ] 
+ c,j s -7 ~ s 

e-  (s + a,paj,'~ 
+ ~ D}-  s 7 ~ ") (87) 

where fij and A t are given as functions o f  D5 and ~j(z,)  by (25) and (26); 
D~. and C~ are related by (31); and the functions ~bl(z, ~) and q~l(z, a) are 
defined by (22) and (24). 

We hope to come back to this problem in the near future and discuss the 

results numerically. 
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